Immobilization, Regiospecificity Characterization and Application of Aspergillus oryzae Lipase in the Enzymatic Synthesis of the Structured Lipid 1,3-Dioleoyl-2-Palmitoylglycerol

نویسندگان

  • Haiying Cai
  • Yang Li
  • Minjie Zhao
  • Guanwen Fu
  • Jia Lai
  • Fengqin Feng
  • Y-H Percival Zhang
چکیده

The enzymatic synthesis of 1,3-dioleoyl-2-palmitoylglycerol (OPO), one of the main components of human milk fats, has been hindered by the relatively high cost of sn-1,3-specific lipases and the deficiency in biocatalyst stability. The sn-1,3-specific lipase from Aspergillus oryzae (AOL) is highly and efficiently immobilized with the polystyrene-based hydrophobic resin D3520, with a significant 49.54-fold increase in specific lipase activity compared with the AOL powder in catalyzing the synthesis of OPO through the acidolysis between palm stearin and oleic acid (OA). The optimal immobilization conditions were investigated, including time course, initial protein concentration and solution pH. The sn-1,3 specificity of lipases under different immobilization conditions was evaluated and identified as positively associated with the lipase activity, and the pH of the immobilization solution influenced the regiospecificity and synthetic activity of these lipases. Immobilized AOL D3520, as the biocatalyst, was used for the enzymatic synthesis of the structured lipid OPO through the acidolysis between palm stearin and OA. The following conditions were optimized for the synthesis of structured lipid OPO: 65 °C temperature; 1:8 substrate molar ratio between palm stearin and OA; 8% (w/w) enzyme load; 3.5% water content of the immobilized lipase; and 1 h reaction time. Under these conditions, highly efficient C52 production (45.65%) was achieved, with a tripalmitin content of 2.75% and a sn-2 palmitic acid (PA) proportion of 55.08% in the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasonic pretreatment in lipase-catalyzed synthesis of structured lipids with high 1,3-dioleoyl-2-palmitoylglycerol content.

Production of structured lipid 1,3-dioleoyl-2-palmitoylglycerol (OPO), from tripalmitin (PPP) and oleic acid (OA) using lipases and ultrasonic pretreatment was conducted. Factors influencing both the ultrasonic conditions and enzymatic reaction were investigated. Optimum conditions could be attained with 6 min pretreatment time, 50% ultrasonic power, 3 s/9 s (work/pause) cycle of ultrasonic pul...

متن کامل

Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

Background: Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective: The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorpti...

متن کامل

Synthesis and Characteristics of Mesoporous Sol-gels for Lipase Immobilization

Enzyme cost is the major problem for industrial scale application. Immobilization is a promising approach to moderate the enzyme cost factor and increase its stability and activity. In this study, sol-gel method was used to prepare the immobilization platform and entrapped lipase as one of the most used enzyme in dairy processing, cosmetics and pharmaceutical industries. Lipase from Candida rug...

متن کامل

Lipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil

In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...

متن کامل

Enzymatic Synthesis of Sucrose-6-acetate by a Novel Immobilized Fructosyltransferase From Aspergillus sp. GX-0010

Background: Sucralose is an ideal food sweetener and sucrose-6-acetate (s-6-a) is a key intermediate for synthesis of sucralose. Synthesis of s-6-a was studied by free fructosyltransferase (FTase) from Aspergillus oryzae. Because of the limitations of free enzyme in stability and reusability, a FTase obtained from the new isolated Aspergillus sp. GX-0010 was immobilized and inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015